66 research outputs found

    QSAR-Driven Discovery of Novel Chemical Scaffolds Active against Schistosoma mansoni.

    Get PDF
    Schistosomiasis is a neglected tropical disease that affects millions of people worldwide. Thioredoxin glutathione reductase of Schistosoma mansoni (SmTGR) is a validated drug target that plays a crucial role in the redox homeostasis of the parasite. We report the discovery of new chemical scaffolds against S. mansoni using a combi-QSAR approach followed by virtual screening of a commercial database and confirmation of top ranking compounds by in vitro experimental evaluation with automated imaging of schistosomula and adult worms. We constructed 2D and 3D quantitative structure-activity relationship (QSAR) models using a series of oxadiazoles-2-oxides reported in the literature as SmTGR inhibitors and combined the best models in a consensus QSAR model. This model was used for a virtual screening of Hit2Lead set of ChemBridge database and allowed the identification of ten new potential SmTGR inhibitors. Further experimental testing on both shistosomula and adult worms showed that 4-nitro-3,5-bis(1-nitro-1H-pyrazol-4-yl)-1H-pyrazole (LabMol-17) and 3-nitro-4-{[(4-nitro-1,2,5-oxadiazol-3-yl)oxy]methyl}-1,2,5-oxadiazole (LabMol-19), two compounds representing new chemical scaffolds, have high activity in both systems. These compounds will be the subjects for additional testing and, if necessary, modification to serve as new schistosomicidal agents

    A phase I study of intravenous liposomal daunorubicin (DaunoXome) in paediatric patients with relapsed or resistant solid tumours

    Get PDF
    Anthracyclines are widely used in paediatric oncology, but their use is limited by the risk of cumulative cardiac toxicity. Encapsulating anthracyclines in liposomes may reduce cardiac toxicity and possibly increase drug availability to tumours. A phase I study in paediatric patients was designed to establish the dose limiting toxicity (DLT) and maximum tolerated dose (MTD) after a single course of liposomal daunorubicin, ‘DaunoXome', as a 1 h infusion on day 1 of a 21 day cycle. Patients were stratified into two groups according to prior treatment: Group A (conventional) and group B (heavily pretreated patients). Dose limiting toxicity was expected to be haematological, and a two-step escalation was planned, with and without G-CSF support. Pharmacokinetic studies were carried out in parallel. In all, 48 patients aged from 1 to 18 years were treated. Dose limiting toxicity was neutropenia for both groups. Maximum tolerated dose was defined as 155 mg m−2 for Group A and 100 mg m−2 for Group B. The second phase with G-CSF was interrupted because of evidence of cumulative cardiac toxicity. Cardiac toxicity was reported in a total of 15 patients in this study. DaunoXome shares the early cardiotoxicity of conventional anthracyclines in paediatric oncology. This study has successfully defined a haematological MTD for DaunoXome, but the significance of this is limited given the concerns of delayed cardiac toxicity. The importance of longer-term follow-up in patients enrolled into phase I studies has been underestimated previously, and may lead to an under-recognition of important adverse events

    Identification of new Wilms tumour predisposition genes: an exome sequencing study

    Get PDF
    BACKGROUND: Wilms tumour is the most common childhood renal cancer and is genetically heterogeneous. While several Wilms tumour predisposition genes have been identified, there is strong evidence that further predisposition genes are likely to exist. Our study aim was to identify new predisposition genes for Wilms tumour. METHODS: In this exome sequencing study, we analysed lymphocyte DNA from 890 individuals with Wilms tumour, including 91 affected individuals from 49 familial Wilms tumour pedigrees. We used the protein-truncating variant prioritisation method to prioritise potential disease-associated genes for further assessment. We evaluated new predisposition genes in exome sequencing data that we generated in 334 individuals with 27 other childhood cancers and in exome data from The Cancer Genome Atlas obtained from 7632 individuals with 28 adult cancers. FINDINGS: We identified constitutional cancer-predisposing mutations in 33 individuals with childhood cancer. The three identified genes with the strongest signal in the protein-truncating variant prioritisation analyses were TRIM28, FBXW7, and NYNRIN. 21 of 33 individuals had a mutation in TRIM28; there was a strong parent-of-origin effect, with all ten inherited mutations being maternally transmitted (p=0·00098). We also found a strong association with the rare epithelial subtype of Wilms tumour, with 14 of 16 tumours being epithelial or epithelial predominant. There were no TRIM28 mutations in individuals with other childhood or adult cancers. We identified truncating FBXW7 mutations in four individuals with Wilms tumour and a de-novo non-synonymous FBXW7 mutation in a child with a rhabdoid tumour. Biallelic truncating mutations in NYNRIN were identified in three individuals with Wilms tumour, which is highly unlikely to have occurred by chance (p<0·0001). Finally, we identified two de-novo KDM3B mutations, supporting the role of KDM3B as a childhood cancer predisposition gene. INTERPRETATION: The four new Wilms tumour predisposition genes identified-TRIM28, FBXW7, NYNRIN, and KDM3B-are involved in diverse biological processes and, together with the other 17 known Wilms tumour predisposition genes, account for about 10% of Wilms tumour cases. The overlap between these 21 constitutionally mutated predisposition genes and 20 genes somatically mutated in Wilms tumour is limited, consisting of only four genes. We recommend that all individuals with Wilms tumour should be offered genetic testing and particularly, those with epithelial Wilms tumour should be offered TRIM28 genetic testing. Only a third of the familial Wilms tumour clusters we analysed were attributable to known genes, indicating that further Wilms tumour predisposition factors await discovery. FUNDING: Wellcome Trust

    Infant High-Grade Gliomas Comprise Multiple Subgroups Characterized by Novel Targetable Gene Fusions and Favorable Outcomes.

    Get PDF
    Infant high-grade gliomas appear clinically distinct from their counterparts in older children, indicating that histopathologic grading may not accurately reflect the biology of these tumors. We have collected 241 cases under 4 years of age, and carried out histologic review, methylation profiling, and custom panel, genome, or exome sequencing. After excluding tumors representing other established entities or subgroups, we identified 130 cases to be part of an "intrinsic" spectrum of disease specific to the infant population. These included those with targetable MAPK alterations, and a large proportion of remaining cases harboring gene fusions targeting ALK (n = 31), NTRK1/2/3 (n = 21), ROS1 (n = 9), and MET (n = 4) as their driving alterations, with evidence of efficacy of targeted agents in the clinic. These data strongly support the concept that infant gliomas require a change in diagnostic practice and management. SIGNIFICANCE: Infant high-grade gliomas in the cerebral hemispheres comprise novel subgroups, with a prevalence of ALK, NTRK1/2/3, ROS1, or MET gene fusions. Kinase fusion-positive tumors have better outcome and respond to targeted therapy clinically. Other subgroups have poor outcome, with fusion-negative cases possibly representing an epigenetically driven pluripotent stem cell phenotype.See related commentary by Szulzewsky and Cimino, p. 904.This article is highlighted in the In This Issue feature, p. 890

    Do pharmacokinetic polymorphisms explain treatment failure in high-risk patients with neuroblastoma?

    Full text link
    • …
    corecore